Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ocean's organic carbon export is a key control on atmospheric pCO2and stimulating this export could potentially mitigate climate change. We use a data‐constrained model to calculate the sensitivity of atmospheric pCO2to local changes in export using an adjoint approach. A perpetual enhancement of the biological pump's export by 0.1 PgC/yr could achieve a roughly 1% reduction in pCO2at average sensitivity. The sensitivity varies roughly 5‐fold across different ocean regions and is proportional to the difference between the mean sequestration timeτseqof regenerated carbon and the response timeτpreof performed carbon, which is the reduction in the preformed carbon inventory per unit increase in local export production. Air‐sea CO2disequilibrium modulates the geographic pattern ofτpre, causing particularly high sensitivities (2–3 times the global mean) in the Antarctic Divergence region of the Southern Ocean.more » « less
-
Abstract Mid-depth North Pacific waters are rich in nutrients and respired carbon accumulated over centuries. The rates and pathways with which these waters exchange with the surface ocean are uncertain, with divergent paradigms of the Pacific overturning: one envisions bottom waters upwelling to 1.5 km depth; the other confines overturning beneath a mid-depth Pacific shadow zone (PSZ) shielded from mean advection. Here global inverse modelling reveals a PSZ where mean ages exceed 1400 years with overturning beneath. The PSZ is supplied primarily by Antarctic and North-Atlantic ventilated waters diffusing from below and from the south. Half of PSZ waters re-surface in the Southern Ocean, a quarter in the subarctic Pacific. The abyssal North Pacific, despite strong overturning, has mean re-surfacing times also exceeding 1400 years because of diffusion into the overlying PSZ. These results imply that diffusive transports – distinct from overturning transports – are a leading control on Pacific nutrient and carbon storage.more » « less
-
Abstract Two centuries of anthropogenic CO2emissions have increased the CO2concentration of the atmosphere and the dissolved inorganic carbon (DIC) concentration of the ocean compared to preindustrial times. These anthropogenic carbon perturbations are often equated to the amount of anthropogenically emitted carbon in the atmosphere or ocean, which ignores the possibility of a shift of natural carbon between the oceanic and atmospheric carbon reservoirs. Here we use a data‐assimilated ocean circulation model and numerical tracers akin to ideal isotopes to label carbon when it is emitted by anthropogenic sources. We find that emitted carbon accounts for only about 45% of the atmospheric CO2increase since preindustrial times, the remaining 55% being natural CO2that outgassed from the ocean in response to anthropogenically emitted carbon invading the ocean. This outgassing is driven by the order‐10 seawater carbonate buffer factor which causes increased leakage of natural CO2as DIC concentrations increase. By 2020, the ocean had outgassed ∼159 Pg of natural carbon, which is counteracted by the ocean absorbing ∼347 Pg of emitted carbon, about 1.8 times more than the net increase in oceanic carbon storage of ∼188 PgC. These results do not challenge existing estimates of anthropogenically driven changes in atmospheric or oceanic carbon inventories, but they shed new light on the composition of these changes and the fate of anthropogenically emitted carbon in the Earth system.more » « less
-
Abstract 39Ar with its 269‐year half‐life has great potential for constraining ocean ventilation and transport. Here we estimate the distribution of39Ar using a steady ocean circulation inverse model. Our estimates match available39Ar measurements to within an absolute error of ∼9% modern argon without major biases. We find that39Ar traces out the world ocean's ventilation pathways and that the39Ar age ΓArand the ideal mean age have broadly similar large‐scale patterns. At the surface,39Ar is close to saturated except at high latitudes. Undersaturation imparts a finite39Ar age to surface waters relative to the atmosphere, with peak values exceeding 100 years in Antarctic waters. This reservoir age is propagated into the interior with Antarctic Bottom Water, elevating ΓArby ∼50 years in the deep Pacific and Indian oceans. Our estimates identify the large‐scale gradients and uncertainty patterns of39Ar, thus providing guidance for future measurements.more » « less
An official website of the United States government
